A time-dependent parameter estimation framework for crop modeling
نویسندگان
چکیده
منابع مشابه
A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملan investigation about the appropriate stochastic modeling framework for agricultural insurance pricing
با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...
Reviewing the harvest index estimation in crop modeling
H Harvest index (HI), ratio of seed yield to aboveground dry matter, is a very important parameter for estimating seed yield in several crop models. In this study, the importance, definition, variability and estimation methods of HI in crop models were discussed. HI estimation methods are categorized into two groups including: (i) complex methods that estimate HI from the beginning of seed gro...
متن کاملTime-frequency-autorgressive Random Processes: Modeling and Fast Parameter Estimation
We present a novel formulation of nonstationary autoregressive (AR) models in terms of time-frequency (TF) shifts. The parameters of the proposed TFAR model are determined by "TF Yule-Walker equations" that involve the expected ambiguity function and can be solved efficiently due to their block-Toeplitz structure. For moderate model orders, we also propose approximate TF Yule-Walker equations t...
متن کاملTime-frequency-autoregressive random processes: modeling and fast parameter estimation
We present a novel formulation of nonstationary autoregressive (AR) models in terms of time-frequency (TF) shifts. The parameters of the proposed TFAR model are determined by “TF Yule-Walker equations” that involve the expected ambiguity function and can be solved efficiently due to their block-Toeplitz structure. For moderate model orders, we also propose approximate TF Yule-Walker equations t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2021
ISSN: 2045-2322
DOI: 10.1038/s41598-021-90835-x